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THE EISENSTEIN ELEMENTS OF MODULAR SYMBOLS FOR LEVEL

PRODUCT OF TWO DISTINCT ODD PRIMES

DEBARGHA BANERJEE AND SRILAKSHMI KRISHNAMOORTY

Abstract. We explicitly write down the Eisenstein elements inside the space of modular symbols for

Eisenstein series with integer coefficients for the congruence subgroups Γ0(pq) with p and q distinct odd

primes, giving an answer to a question of Merel in these cases. We also compute the winding elements

explicitly for these congruence subgroups. Our results are explicit versions of the Manin-Drinfeld

Theorem [Thm. 9].

1. Introduction

In his landmark paper on Eisenstein ideals, Mazur studied torsion points of elliptic curves over Q and

gave a list of possible torsion subgroups of elliptic curves [cf. Thm. 8, [9]]. In [14], Merel wrote down

modular symbols for the congruence subgroups Γ0(p) for any odd prime p that correspond to differential

forms of third kind on the modular curves. He then use these modular symbols to give an uniform upper

bound of the torsion points of elliptic curves over any number fields in terms of extension degrees of

these number fields [13]. The explicit expressions of winding elements for prime level of [14] are being

used by Calegari and Emerton to study the ramifications of Hecke algebras at the Eisenstein primes [3].

Several authors afterwards studied the torsion points of elliptic curves over number fields using modular

symbols.

In the present paper, we study elements of relative homology groups of the modular curve X0(pq)

that correspond to differential forms of third kind with p and q distinct odd primes. As a consequence,

we give an “effective” proof of the Manin-Drinfeld theorem [Thm. 9] for the special case of the image

in H1(X0(pq),R) of the path in H1(X0(pq), ∂(X0(pq)),Z) joining 0 and i∞. Since the algebraic part of

the special values of L-function are obtained by integrating differential forms on these modular symbols,

our explicit expression of the winding elements should be useful to understand the algebraic parts of

the special values at 1 of the L-functions of the quotient Jacobian of modular curves for the congruence

subgroup Γ0(pq) [1].

For N ∈ {p, q, pq}, consider the basis EN of E2(Γ0(pq)) [§ 4] for which all the Fourier coefficients at

i∞ belong to Z. The meromorphic differential forms EN (z)dz are of third kind on the Riemann surface

X0(pq) but of first kind on the non-compact Riemann surface Y0(pq).

Let ξ : SL2(Z) → H1(X0(pq), cusps,Z) be the Manin map [§ 3]. For any two coprime integers u

and v with v ≥ 1, let S(u, v) ∈ Z be the Dedekind sum [cf 4.1]. If g ∈ P1(Z/pqZ) is not of the form

(±1, 1), (±1± kx, 1) or (1,±1± kx) with x one of the prime p or q, then we can write it as (r− 1, r+1).
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Let δr be 1 or 0 depending on r is odd or even. For any integer k, let sk = (k + (δk − 1)pq) be

an odd integer. Choose integers s, s′ and l, l′ such that l(skx + 2) − 2spq = 1 and l′skx − 2s′ pqx = 1.

Let γx,k
1 =

(

1+4spq −2l
−4s(skx+2)pq 1+4spq

)

and γx,k
2 =

(

1+4s′ pq
x

−2l′

−4s′(sk)pq 1+4s′ pq
x

)

be two matrices [cf. Lemma 28]. For

l = 1, 2, consider the integers

PN (γx,k
l ) = sgn(t(γx,k

l ))[2(S(s(γx,k
l ), |t(γx,k

l )|N)− S(s(γx,k
l ), |t(γx,k

l )|))

−S(s(γx,k
l ),

|t(γx,k
l |)
2

N) + S(s(γx,k
l ),

|t(γx,k
l )|
2

)]

with

s(γx,k
1 ) = 1− 4spq(1 + skx), t(γ

x,k
1 ) = −2(l− 2s(skx+ 2)pq)

and

s(γx,k
2 ) = 1− 4s′pq(sk −

1

x
), t(γx,k

2 ) = −2(l′ − 2s′skpq).

Define the function FN : P1(Z/pqZ) → Z by

FN (g) =































2(S(r,N)− 2S(r, 2N)) if g = (r − 1, r + 1),

PN (γx,k
1 )− PN (γx,k

2 ) if g = (1 + kx, 1) or g = (−1− kx, 1),

−PN (γx,k
1 ) + PN (γx,k

2 ) if g = (1, 1 + kx) or g = (1,−1− kx),

0 if g = (±1, 1).

Theorem 1. The modular symbol

EEN
=

∑

g∈P1(Z/pqZ)

FEN
(g)ξ(g)

in H1(X0(pq), ∂(X0(pq),Z) is the Eisenstein element [§ 5] corresponding to the Eisenstein series EN ∈
E2(Γ0(pq)).

In [2], a description is given of Eisenstein elements in terms of certain integrals for M = p2. In this

article, we give an explicit description in terms of two matrices γx,k
1 and γx,k

2 . Let B1 : R → R be the

periodic first Bernoulli polynomial. For the Eisenstein series Epq [§ 4], we write down the Eisenstein

elements more explicitly if g = (r − 1, r + 1). Replacing p with pq [Lemma 4, [14]], we write

Fpq((r − 1, r + 1)) =

pq−1
∑

h=0

B1(
hr

2pq
).

Recall the concept of the winding elements [§ 37]. We write down the explicit expression of the winding

elements for the congruence subgroup Γ0(pq).

Corollary 2.

(1− pq)epq =
∑

x∈(Z/pqZ)∗

Fpq((1, x)){0,
1

x
}.
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Note that if ν = gcd(pq − 1, 12) and n = pq−1
ν , then a multiple of winding element nepq belongs

to H1(X0(pq),Z). Manin-Drinfeld proved that the modular symbol {0,∞} ∈ H1(X0(N),Q) using the

theory of suitable Hecke operators acting on modular curve X0(N)/Q. In this paper, we follow the

approach of Merel [cf. [14], Prop. 11]. Our explicit expression of winding element should be useful to

understand the algebraic part of the special values of L-functions [cf. [1], p. 26].

Since Hecke operators are defined over Q, there is a possibility that we can find the Eisenstein

elements for the congruence subgroups of odd level in a completely different method without using

boundary computations. It is tempting to remark that our method should generalize to the congruence

subgroup Γ0(N) atleast if N is squarefree and odd. Unfortunately, generalizing our method is equivalent

to explicit understanding of boundary homologies of modular curves defined over rationals. For instance,

if N = pqr with p, q, r three distinct primes then there are 8 cusps. Since in these cases, there are more

cusps the computations of boundaries become much more tedious. One of the author wish to tackle the

difficulty using the “level” of the cusps in a future article.
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suggestions of Professor Löıc Merel. We would like to thank IMSc, Chennai for providing excellent

working conditions. The second author would like to thank MPIM, Germany for the great hospitality

during her visit. She was supported by a DST-INSPIRE grant. We wish to thank the anonymous referee
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3. Modular Symbols

Let H ∪ P1(Q) = H and Γ ⊂ SL2(Z) be a congruence subgroup. The topological space XΓ(C) = Γ\H
has a natural structure of a smooth compact Riemann surface and consider the usual projection map

π : H → XΓ(C). Recall, the map π is unramified outside the elliptic points and the set of cusps ∂(XΓ).

Both these sets are finite.

3.1. The rational structure of the curve X0(N) defined over rational. There is a smooth pro-

jective curve X0(N) defined over Q for which the space Γ0(N)\H is canonically identified with the set

of C-points of the projective curve X0(N). We are interested to understand the Q-structure of the

compactified modular curve X0(N).

3.2. Classical modular symbols. Recall the following fundamental theorem of Manin [8].

Theorem 3. For α ∈ H, consider the map c : Γ → H1(X0(N),Z) defined by

c(g) = {α, gα}.

The map c is a surjective group homomorphism which does not depend on the choice of point α. The

kernel of this homomorphism is generated by

(1) the commutator,

(2) the elliptic elements,
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(3) the parabolic elements

of the congruence subgroup Γ.

In particular, the above theorem implies that {α, gα} = 0 for all α ∈ P1(Q) and g ∈ Γ.

3.3. The Manin map. Let T, S be the matrices ( 1 1
0 1 ) ,

(

0 −1
1 0

)

and R = ST be the matrix
(

0 −1
1 1

)

. The

modular group SL2(Z) is generated by S and T .

Theorem 4 (Manin). [8] Let

ξ : SL2(Z) → H1(X0(pq), ∂(X0(pq)),Z)

be the map that takes a matrix g ∈ SL2(Z) to the class in H1(X0(pq), ∂(X0(pq)),Z) of the image in

X0(pq) of the geodesic in H ∪ P1(Q) joining g.0 and g.∞.

• The map ξ is surjective.

• For all g ∈ Γ0(pq)\SL2(Z), ξ(g) + ξ(gS) = 0 and ξ(g) + ξ(gR) + ξ(gR2) = 0.

We have a short exact sequence,

0 → H1(X0(pq),Z) → H1(X0(pq), ∂(X0(pq)),Z) → Z∂(X0(pq)) δ′−→ Z → 0.

The first map is a canonical injection. The boundary map δ′ takes a geodesic, joining the cusps r and s

to the formal symbol [r] − [s] and the third map is the sum of the coefficients.

3.4. Relative homology group H1(X0(pq)−R ∪ I, ∂(X0(pq)),Z). Consider the points i =
√
−1 and

ρ = 1+
√
−3

2 on the complex upper half plane with ν the geodesic joining i and ρ. These are the elliptic

points on the Riemann surface X0(pq). The projection map π is unramified outside cusps and elliptic

points.

Say R = π(SL2(Z)ρ) and I = π(SL2(Z)i) be the image of these two sets in X0(pq). These two sets

are disjoint. Consider now the relative homology group H1(Y0(pq), R ∪ I,Z). For g ∈ SL2(Z), let [g]∗

be the class of π(gν) in the relative homology group H1(Y0(pq), R ∪ I,Z). Let ρ∗ = −ρ be another

point on the boundary of the fundamental domain. The homology groups H1(Y0(pq),Z) are subgroups

of H1(Y0(pq), R∪ I,Z). Suppose z0 ∈ H be such that |z0| = 1 and −1
2 < Re(z0) < 1. Let γ be the union

of the geodesic in H ∪ P1(Q) joining 0 and z0 and z0 and i∞. For g ∈ Γ0(pq)\SL2(Z), let [g]∗ be the

class of π(gγ) in H1(X0(pq)−R ∪ I, ∂(X0(pq)),Z).

We have an intersection pairing

◦ : H1(X0(pq)−R ∪ I, ∂(X0(pq)),Z) ×H1(Y0(pq), R ∪ I,Z) → Z.

Recall the following results of Merel [Prop. 1, Cor. 1, [12]].

Proposition 5. [14] For g, h ∈ Γ0(pq)\SL2(Z), we have

[g]∗ ◦ [h]∗ = 1

if Γ0(pq)g = Γ0(pq)h and

[g]∗ ◦ [h]∗ = 0

otherwise.
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Corollary 6. The homomorphism of groups ZΓ0(pq)\SL2(Z) → H1(Y0(pq), R ∪ I,Z) induced by the map

ξ0(
∑

g

µgg) =
∑

g

µg[g]∗

is an isomorphism.

The following important property [Cor. 3, [12]] of the intersection pairing will be used later.

Corollary 7. For g ∈ Γ0(pq)\SL2(Z), let
∑

h µhh ∈ ZΓ0(pq)\SL2(Z) be such that
∑

h µh[h]∗ is the image

of an element of H1(Y0(pq),Z) under the canonical injection. We have

[g]∗ ◦ (
∑

h

µh[h]∗) = µg.

We have a short exact sequence,

0 → H1(X0(pq)−R ∪ I,Z) → H1(X0(pq)−R ∪ I, ∂(X0(pq)),Z) → Z{∂(X0(pq))} δ−→ Z → 0.

The boundary map δ takes a geodesic, joining the cusps r and s to the formal symbol [r] − [s]. Note

that δ′(ξ(g)) = δ([g]∗) for all g ∈ SL2(Z).

Recall, we have a canonical bijection Γ0(pq)\SL2(Z) ∼= P1(Z/pqZ) given by

(

a b

c d

)

→ (c, d). Say

αk, βr and γs are the matrices
(

0 −1
1 k

)

,
(−1 −r

p rp−1

)

and
(−1 −s

q sq−1

)

respectively. We explicitly write down

the elements of P1(Z/pqZ) as a set

{(1, k), (1, tp), (1, t′q), (p, q), (q, p), (tp, 1), (t′q, 1), (1, 0), (0, 1)}

with k ∈ (Z/pqZ)∗, t ∈ (Z/qZ)∗, t′ ∈ (Z/pZ)∗ . Observe that (p, q) = (tp, q) = (p, t′q) for all t and t′ co

prime to pq.

Lemma 8. The set Ω = {I, αk, βr, γs|0 ≤ k ≤ pq− 1, 0 ≤ r ≤ (p− 1), 0 ≤ s ≤ (q− 1)} forms a complete

set of coset representatives of Γ0(pq)\SL2(Z).

Proof. The orbits Γ0(pq)αk, Γ0(pq)βl and Γ0(pq)γm are disjoint since ab−1 do not belong to Γ0(pq) for

two distinct matrices a, b from the set Ω. There are 1+pq+p+q = |P1(Z/pqZ)| coset representatives. �

We list different rational numbers of the form α(0) and α(∞) with α ∈ Ω as equivalence classes of

cusps as follows:

0 1
p

1
q

−l
lp−1 , (lp− 1, q) = 1 −1

k , (k, p) > 1 −1
k , (k, q) > 1

−m
mq−1 , (mq − 1, p) = 1 −m

mq−1 , (mq − 1, p) > 1 −l
lp−1 , (lp− 1, q) > 1

.

3.5. Manin-Drinfeld theorem. Following [7], we briefly recall the statement of the Manin-Drinfeld

theorem.

Theorem 9 ( Manin-Drinfeld). [6] For a congruence subgroup Γ and any two cusps α, β in P1(Q), the

path

{α, β} ∈ H1(XΓ,Q).



6 DEBARGHA BANERJEE AND SRILAKSHMI KRISHNAMOORTY

This theorem can be reformulated in terms of divisor classes on the Riemann surface.

Theorem 10. Let a =
∑

imiPi be a divisor of degree zero on X. Then a is a divisor of a rational

function if and only if there exist a cycle σ ∈ H1(XΓ,Z) such that
∫

a

ω =
∑

i

mi

∫ Pi

P0

ω =

∫

σ

ω

for every ω ∈ H0(XΓ,ΩXΓ).

As a corollary, we notice that {x, y} ∈ H1(XΓ,Q) if and if there is a positive integer m such that

m(πΓ(x) − πΓ(y)) is a divisor of a function. In other words, the degree zero divisors supported on the

cusps are of finite order in the divisor class group. Manin-Drinfeld proved it using the extended action

of the usual Hecke operators. In particular, it says that {0,∞} ∈ H1(XΓ,Q) although 0 and ∞ are

two inequivalent cusps of XΓ. In [17], Ogg constructed certain modular function X0(pq) whose divisors

coincide with degree zero divisors on the modular curves.

4. Eisenstein series for Γ0(pq) with integer coefficients

Let σ1(n) denote the sum of the positive divisors of n. We consider the series

E′
2(z) = 1− 24(

∑

n

σ1(n)e
2πinz).

Let ∆ be the Ramanujan’s cusp form of weight 12. For all N ∈ N, the function z → ∆(Nz)
∆(z) is a function

on H invariant under Γ0(N). The logarithmic differential of this function is 2πiEN (z)dz and EN is a

classical holomorphic modular form of weight two for Γ0(N) with constant term N − 1. The differential

form EN (z)dz is a differential form of third kind on X0(N). The periods [§ 4.1] of these differential forms

are in Z.

By [[5], Thm. 4.6.2], the set Epq = {Ep, Eq, Epq} is a basis of E2(Γ0(pq)).

Lemma 11. The cusps ∂(X0(pq)) can be identified with the set {0,∞, 1p ,
1
q }.

Proof. If a
c and a′

c′ are in P1(Q), then Γ0(pq)
a
c = Γ0(pq)

a′

c′ ⇐⇒
(

ay

c

)

≡
(

a′ + jc′

c′y

)

(mod pq), for

some j and y such that gcd(y, pq) = 1 [cf. [5], p. 99]. A small check shows that the orbits Γ0(pq)0,

Γ0(pq)∞, Γ0(pq)
1
p and Γ0(pq)

1
q are disjoint. �

Let Div0(X0(pq), ∂(X0(pq)),Z) be the group of degree zero divisors supported on cusps. For all cusps

x, let eΓ0(pq)(x) denote the ramification index of x over SL2(Z)\H ∪ P1(Q) and

rΓ0(pq)(x) = eΓ0(pq)(x)a0(E[x]).

By [[18], p. 23], there is a canonical isomorphism δ : E2(Γ0(pq)) → Div0(X0(pq), ∂(X0(pq)),Z) that

takes the Eisenstein series E to the divisor

(4.1) δ(E) =
∑

x∈Γ0(pq)\P1(Q)

rΓ0(pq)(x)[x].
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Hence, the Eisenstein element is related to the Eisenstein series by the boundary map. In Prop. 34, we

prove that the boundary of Eisenstein element is indeed the boundary of Eisenstein series. By [[19], p.

538], we see that

eΓ0(pq)(x) =































q if x = 1
p

p if x = 1
q

1 if x = ∞
pq if x = 0.

Since
∑

x∈∂(X0(pq))

eΓ0(pq)(x)a0(E[x]) = 0, we write the corresponding degree zero divisor as

δ(E) = a0(E)({∞} − {0}) + qa0(E[
1

p
])({1

p
} − {0}) + pa0(E[

1

q
])({1

q
} − {0}).

4.1. Period Homomorphisms. We now define the period homomorphisms for the differential forms

of third kind.

Definition 12 (Period homomorphism). For EN ∈ Epq, the differential forms EN (z)dz are of third

kind on the Riemann surface X0(pq) but of first kind on the non-compact Riemann surface Y0(N). For

any z0 ∈ H and γ ∈ Γ0(pq), let c(γ) be the class in H1(Y0(pq),Z) of the image in Y0(pq) of the geodesic

in H joining z0 and γ(z0). That the class is non-zero follows from Thm. 3. This class is independent

of the choice of z0 ∈ H and let πEN
(γ) =

∫

c(γ)
EN (z)dz. The map πEN

: Γ0(pq) → Z is the “period”

homomorphism of EN .

Let B1(x) be the first Bernoulli’s polynomial of period 1 defined by

B1(0) = 0, B1(x) = x− 1

2

if x ∈ (0, 1). For any two integers u and v with v ≥ 1, we define the Dedekind sum by the formula:

S(u, v) =

v−1
∑

t=1

B1(
tu

v
)B1(

u

v
).

Recall some well-known properties of the period mapping πEN
[cf. [10], p. 10, [14], p. 14] for the Eisenstein

series EN ∈ Epq .

Proposition 13. Let γ =
(

a b
c d

)

be an element of Γ0(pq).

(1) πEN
is a homomorphism Γ0(pq) → Z.

(2) Consider the number µ = gcd(N − 1, 12), the image of πEN
lies in µZ.

(3)

πEN
(γ) =







a+d
c (N − 1) + 12sgn(c)(S(d, |c|)− S(d, |c|

N )) if c 6= 0,

b
d (N − 1) if c = 0.

(4)

πEN
(γ) = πEN

(
(

d c
N

Nb a

)

)
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5. Eisenstein elements

Following [14] and [11], recall the concept of Eisenstein elements of the space of modular symbols. For

any natural number M > 4, the congruence subgroup Γ0(M) is the subgroup of SL2(Z) consisting of all

matrices
(

a b
c d

)

such that M | c. The congruence subgroup Γ0(M) acts on the upper half plane H in the

usual way. The quotient space Γ0(M)\H is denoted by Y0(M). Apriori, these are all Riemann surfaces

and hence algebraic curves defined over C. There are models of these algebraic curve defined over Q and

they parametrize elliptic curves with cyclic subgroups of order M . Let X0(M) be the compactification

of the Riemann surface Y0(M) obtained by adjoining the set of cusps ∂(X0(M)) = Γ0(M)\P1(Q).

Definition 14 (Eisenstein elements). Let πEN
: H1(Y0(pq),Z) → Z be the “period” homomorphism of

EN [§ 4.1]. The intersection pairing ◦ [11] induces a perfect, bilinear pairing

H1(X0(pq), ∂(X0(pq),Z)×H1(Y0(pq),Z) → Z.

Since ◦ is a non-degenerate bilinear pairing, there is an unique element EEN
∈ H1(X0(pq), ∂(X0(pq)),Z)

such that EEN
◦ c = πEN

(c). The modular symbol EEN
is the Eisenstein element corresponding to the

Eisenstein series EN .

We intersect with the congruence subgroup Γ(2) to ensure that the Manin maps become bijective

(rather than only surjective), compute the Eisenstein elements for these modular curves, calculate the

boundary and show that the these boundaries coincide with the original Eisenstein elements. In the case

of Γ0(p
2), although it is difficult to find the Fourier expansion of modular forms at different cusp but

fortunately for all g ∈ Γ0(p) the matrices g ( 1 1
0 1 ) g

−1 belong to Γ0(p
2) and hence it was easier to tackle

the explicit coset representatives. Unfortunately, for N = pq or N = p3 these are no longer true.

To get around this problem for the congruence subgroup Γ0(pq) with p and q distinct primes, we use the

relative homology group H1(X0(pq), R∪I,Z). For these relative homology groups, the associated Manin

maps are bijective and the push forward of these Eisenstein elements inside the original modular curve

turn out to have same boundary as the original Eisenstein elements. We consider three different homology

groups in these paper and in particular the study of the relative homology group H1(X0(N), R ∪ I,Z)

to determine the Eisenstein element is a new idea that we wish to propose in this article. That these

relative homology groups should be useful in the study of modular symbol are discovered by Merel.

Definition 15 (Almost eisenstein elements). For N ∈ {p, q, pq}, the differential form EN (z)dz is of first

kind on the Riemann surface Y0(pq). Since ◦ is a non-degenerate bilinear pairing, there is an unique

element E ′
EN

∈ H1(X0(pq)−R∪I, ∂(X0(pq)),Z) such that E ′
EN

◦c = πEN
(c) for all c ∈ H1(Y0(pq), R∪I,Z).

We call E ′
EN

the almost Eisenstein element corresponding to the Eisenstein series EN .

6. Even Eisenstein elements

6.1. Simply connected Riemann surface of genus zero with three marked points. Recall,

there is only one simply connected (genus zero) compact Riemann surface up to conformal bijections:

namely the Riemann sphere or the projective complex plane P1(C). A theorem of Belyi states that every
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(compact, connected, non- singular) algebraic curve X has a model defined over Q if and only if it admits

a map to P1(C) branched over three points.

Consider the subgroup Γ(2) of SL2(Z) consisting of all matrices which are identity modulo the reduc-

tion map modulo 2. The Riemann surface Γ(2) mod H is a Riemann surface of genus zero, denoted by

X(2). Hence, it can be identified with P1(C).

The subgroup Γ(2) has three cusps Γ(2)0, Γ(2)1 and Γ(2)∞. Hence, Γ(2)\H become the simply

connected Riemann surface P1(C) with the three marked points Γ(2)0, Γ(2)1 and Γ(2)∞ given by

respective cusps. The modular curve X0(pq) has no obvious morphism to X(2). Hence, we consider the

modular curve XΓ [§6.2]. There are two obvious maps π, π′ from XΓ to the compact Riemann surface

X0(pq).

6.2. Modular curves with bijective Manin maps. For the congruence subgroup Γ = Γ0(pq)∩Γ(2),

consider the compactified modular curve XΓ = Γ\H ∪ P1(Q) and let πΓ : H ∪ P1(Q) → XΓ be the

canonical surjection.

Let π0 : Γ\H ∪ P1(Q) → Γ(2)\H∪ P1(Q) be the map π0(Γz) = Γ(2)z. The compact Riemann surface

X(2) contains three cusps Γ(2)1, Γ(2)0, Γ(2)∞. Let P− = π−1
0 (Γ(2)1) and P+ be the union of two sets

π−1
0 (Γ(2)0) and π−1

0 (Γ(2)∞). Consider now the Riemann surface XΓ with boundary P+ and P−.

Let δr be 1 or 0 depending on r is odd or even. For any integer k, let sk = (k+(δk − 1)pq) be an odd

integer. Say l and m be two unique integers such that lq +mp ≡ 1 (mod pq) with 1 ≤ l ≤ (p − 1) and

1 ≤ m ≤ (q − 1). The matrices α′
pq =

( pq pq−1
pq+1 pq

)

, α′
k =

(

sk(pq)
2 skpq−1

skpq+1 sk

)

β′
r =

(

−1 −(r+δrq)
p+pq −1+(r+δrq)(p+pq)

)

and

γ′
s =

(

−1 −(s+δspq)
q+pq −1+(s+δspq)(q+pq)

)

are useful to calculate the boundaries of the Eisenstein elements.

Lemma 16. The set ∆ = {I, α′
k, β

′
r, γ

′
s|0 ≤ k ≤ (pq− 1), 0 ≤ r ≤ (q− 1), 0 ≤ s ≤ (p− 1)} ⊂ Γ(2) forms

an explicit set of coset representatives of P1(Z/pqZ).

Proof. An easy check shows that the orbits Γ0(pq)α
′
k, Γ0(pq)β

′
r and Γ0(pq)γ

′
s are disjoint. Since

|P1(Z/pqZ)| = pq + p+ q + 1, the result follows. �

The coset representatives in the above lemma are chosen such that Γ0(pq)βr = Γ0(pq)β
′
r and Γ0(pq)γs=Γ0(pq)γ

′
s.

Lemma 17. Γ\Γ(2) is isomorphic to P1(Z/pqZ)

Proof. The explicit closet representatives of Lemma 16 produce the canonical bijection. �

We study the relative homology groups H1(XΓ−P−, P+,Z) and H1(XΓ−P+, P−,Z). The intersection

pairing is a non-degenerate bilinear pairing ◦ : H1(XΓ − P+, P−,Z) × H1(XΓ − P−, P+,Z) → Z. Recall

the following two fundamental theorems from [14]. For g ∈ Γ\Γ(2), let [g]0 (respectively [g]0) be the

image in XΓ of the geodesic in H ∪ P1(Q) joining g0 and g∞ (respectively g1 and g(−1)). Recall the

following two fundamental theorems of [14].

Theorem 18 ( [14]). Let

ξ0 : ZΓ\Γ(2) → H1(XΓ − P+, P−,Z)
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be the map which takes g ∈ Γ\Γ(2) to the element [g]0 and

ξ0 : ZΓ\Γ(2) → H1(XΓ − P−, P+,Z)

be the map which takes g ∈ Γ\Γ(2) to the element [g]0. The homomorphisms ξ0 and ξ0 are isomorphisms.

Theorem 19 ( [14]). For g, g′ ∈ Γ(2), we have

[g]0 ◦ [g′]0 = 1

if Γg = Γg′ and

[g]0 ◦ [g′]0 = 0

otherwise.

The following two lemmas about the set P− are true for the congruence subgroup Γ0(N) with N odd.

Lemma 20. We can explicitly write the set P− is of the form Γx
y with x and y both odd.

Proof. If possible, some element of P− is of the form Γx
y with x and y co-prime and y even. Consider

the corresponding element in the marked simply connected Riemman surface X(2). The cusp Γ(2)xy is

an element such that y even and p odd (gcd(x, y) = 1). First, choose p′, q′ such that xq′ − yp′ = 1 and

hence
(

x p′

y q′

)

∈ SL2(Z). Clearly, q′ is odd since y is even. If p′ is odd then replace the matrix
(

x p′

y q′

)

with
(

x p′

y q′

)

T−1 to produce a matrix in Γ(2) that takes i∞ to x
y . This is a contradiction to the fact that

Γx
y ∈ P−.

If x is even then the projection of Γx
y produces an element of Γ(2)0. Hence, x is necessarily odd. �

The following lemma is deeply influenced by an important propositions of Manin [[8], Prop. 2.2] and

Cremona [[4], Prop. 2. 2. 3].

Corollary 21. We can explicitly write the set P− = {Γ1,Γ 1
pq ,Γ

1
p ,Γ

1
q }

Proof. Since P− = π−1
0 (Γ(2)1), we can write every element of the set P− as Γθ1 for some θ ∈ ∆

(Lemma 16). Let δ ∈ {1, p, q, pq}, then every element of P− can be written as Γ u
vδ with gcd(u, vδ) = 1

and gcd(vδ, pq
δ ) = 1. Choose an odd integer m and an even integer l such that lu − mvδ = 1. A

calculation using matrix multiplication shows that
(

1 0
δ−1 1

) (

1+c −c
c 1−c

)

1 = 1
δ and

(−m u+m
−l l+vδ

)

1 = u
vδ and

hence A =
(

1 0
δ−1 1

) (

1+c −c
c 1−c

) (

l+vδ −m−u
l −m

)

is a matrix such that A( u
vδ ) =

1
δ . The matrix A belongs to Γ

if and only if cvδ ≡ l′ (mod pq
δ ). Since vδ is coprime to pq

δ , there is always such c. Hence, the set P−

consists of four elements as in the statement of the Corollary. �

Let π, π′ : Γ\H → Γ0(pq)\H be the maps π(Γz) = Γ0(pq)z and π′(Γz) = Γ0(pq)
z+1
2 respectively.

Consider the matrix h = ( 1 1
0 2 ). The morphism π′ is well-defined since the matrix hγh−1 belongs to

Γ0(pq) for all γ ∈ Γ. The morphisms π, π′ together induce a map

κ : C(XΓ) → C(X0(pq))

between the function fields of the Riemann surfaces XΓ by κ(f(z)) = f(π(Γz))2

f(π′(Γz)) . Recall the description

of the coordinate chart around a cusp Γx [16] of the Riemann surface XΓ.
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Definition 22. For a cusp y of the congruence subgroup Γ, let Γy be the subgroup of Γ fixing the cusp

y. Let t ∈ SL2(R) be such that t(y) = i∞ and m be the smallest natural number such that tΓyt
−1 is

generated by the matrix ( 1 m
0 1 ). For the modular curve XΓ, the local coordinate around the point Γy is

z → e2πi
t(z)
m .

Example 23. Let y = 1
δ with δ one of the prime p or q, then h(y) = u

δ with (u, pq) = 1. Choose

integers u′, δ′ with δ′ even such that uδ′ − u′δ = 1 and hence ρh(y) =
(

δ′ u′

−δ u

)

is a matrix such that

ρh(y)(h(y)) = i∞. We can choose such a δ′ ∈ Z since δ is odd.

A calculation using matrix multiplication shows that ρh(y)T
eρh(y)

−1 =
(

1+eδδ′ e(δ′)2

−eδ2 1−eδδ′

)

. Hence, the

smallest possible e to ensure tT et−1 ⊂ Γ0(pq) is
pq
δ .

Example 24. Since det(ρh(y) ◦ h) = 2, hence t =
(

l
2 0

1

)

ρh(y) ◦ h ∈ SL2(R) and t(y) = i∞. A calculation

using matrices shows that tT et−1 =

(

1+ eδδ′

2
eδ′2

4

−eδ2 1− eδδ′

2

)

. Hence, the smallest possible e to ensure tT et−1 ⊂ Γ

is e = 2 pq
δ .

We use the following lemma to construct differential forms of first kind on the ambient Riemann

surface XΓ − P+.

Lemma 25. Let f : X0(pq) → C be a rational function. The divisors of κ(f) are supported on P+.

Proof. Suppose f is a meromorphic function on the Riemann surface X0(pq). Then it is given by g
h with

g and h holomorphic function on the Riemann surface X0(pq). Every element of P− is of the form Γ 1
δ

with δ | N . By [Prop. 4.1, p. 44, [15]], every holomorphic map on Riemann surface locally looks like

z → zn.

Consider the morphism π′ and the point on the modular curve Γ 1
δ . The local coordinates around

the point Γ0(pq)0,Γ0(pq)∞ and Γ0(pq)
1
p are given by q0(z) = e2πi

1
−pqz , q∞(z) = e2πiz and q 1

q
(z) =

e2πi
z

p(−qz+1) respectively. In the modular curve XΓ, the local coordinates around the points of P− are

given by q1(z) = e2πi
1

2pq(−z+1) , q 1
pq
(z) = e2πi

z
2(−pqz+1) , q 1

p
(z) = e2πi

z
2q(−pz+1) and q 1

q
(z) = e2πi

z
2p(−qz+1) .

Now around the point Γ1 and Γ 1
pq , we have the equalities q0 ◦ π = q21 , q0 ◦ π′ = q41 and, q 1

pq
◦ π =

q21
pq

, q 1
pq

◦ π′ = q41
pq

.

Let y = 1
δ with δ one of the prime p or q. The local coordinate chart around the point Γ 1

δ is

z → e2πi
ρh(x)◦h(z)

4e . The map π′ takes it to e2πi
2ρh(x)(h(z))

e . For this coordinate chart the map π′ is given

by z → z4.

We now consider the map π and t =
(

1 0
−δ 1

)

is a matrix such that t(y) = i∞ and e = pq
δ . The local

coordinate around the point Γ 1
δ is z → e2πi

t(z)
2e and the map π takes it to e2πi

t(z)
e . In this coordinate

chart, the map π is given by z → z2. Hence, the function (f◦π)2
f◦π′

has no zero or pole on P−. �

Definition 26. [Even Eisenstein elements] For EN ∈ Epq, let λEN
: X0(pq) → C be the rational function

whose logarithmic differential is 2πiEN (z)dz = 2πiωEN
. Consider the rational function λEN ,2 =

(λEN
◦π)2

λEN
◦π′

on XΓ. By Lemma 25, this function has no zeros and poles in P−. Let κ∗(ωEN
) be the logarithmic

differential of the function. Let ϕEN
(c) =

∫

c
κ∗(ωEN

) be the corresponding “period” homomorphism

H1(XΓ − P+, P−,Z) → Z.
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By the non-degeneracy of the intersection pairing, there is a unique element E0
EN

∈ H1(XΓ−P−, P+,Z)

such that E0
EN

◦ c = ϕEN
(c) for all c ∈ H1(XΓ − P+, P−,Z). The modular symbol E0

EN
is the even

Eisenstein element corresponding to the Eisenstein series EN .

For EN ∈ Epq , define a function FEN
: P1(Z/pqZ) → Z by

FEN
(g) = ϕEN

(ξ0(g)) =

∫ g(−1)

g(1)

[2EN (z)− EN (
z + 1

2
)]dz.

Remark 27. It is easy to see that for any γ =
(

a b
c d

)

∈ Γ(2), hγh−1 =
(

a+c b+d−a−c
2

2c d−c

)

∈ SL2(Z).

For any matrix γ ∈ Γ, consider the rational number PN (γ) =
2πEN

(γ)−πEN
(hγh−1)

12 , t(γ) = b+d−a− c

and s(γ) = a+ c.

Lemma 28. For γ =
(

a b
c d

)

∈ Γ with c 6= 0,

PN (γ) = sgn(t(γ))[2(S(s(γ), |t(γ)|pq)− S(s(γ), |t(γ)|))

−S(s(γ), | t(γ)
2

|pq) + S(s(γ),
|t(γ)|
2

)].

In particular, PN (γ) ∈ Z for all γ ∈ Γ.

Proof. Recall the properties of period homomorphism [cf. Prop. 13]. We calculate the corresponding

periods

πEN
(γ) = πE(TγT

−1) = πEN
(
(

a+c −(a+c)+b+d
c −c+d

)

) = πEN
(
(

a+c −(a+c)+b+d
c −c+d

)

) = πEN
(
(

d−c c
N

t(γ)N a+c

)

).

By [cf. Prop. 13], we have

πEN
(γ) =

a+ d

t(γ)N
(N − 1) + 12sgn(t(γ))[(S(s(γ), |t(γ)|N)− S(s(γ), |t(γ)|]

Similarly,

πEN
(hγh−1) = πEN

(
(

a+c b+d−a−c
2

2c d−c

)

= πEN
(
(

d−c 2c
N

t(γ)N
2 N a+c

)

=
2(a+ d)

t(γ)N
(N − 1) + 12sgn(t(γ))[S(s(γ),

|t(γ)|
2

N)− S(s(γ),
|t(γ)|
2

))]

Hence, we deduce the formula as in the statement. From the formula, it is easy to see that PN (γ) ∈ Z

for all γ ∈ Γ. �

Let x be one of the prime p or q. Choose integers s, s′ and l, l′ such that l(skx + 2) − 2spq = 1 and

l′skx− 2s′ pqx = 1. Let γx,k
1 =

(

1+4spq −2l
−4s(skx+2)pq 1+4spq

)

and γx,k
2 =

(

1+4s′ pq
x

−2l′

−4s′(sk)pq 1+4s′ pq
x

)

be two matrices in

Γ. Since the integers l and l′ are necessarily odd, we have γx,k
1 ( 1

skx+2 ) = − 1
skx+2 and γx,k

2 ( 1
skx

) = − 1
skx

.

Using the formula of Lemma 28, we deduce that

s(γx,k
1 ) = 1− 4spq(1 + skx), t(γ

x,k
1 ) = −2(l− 2s(skx+ 2)pq)

and

s(γx,k
2 ) = 1− 4s′pq(sk −

1

x
), t(γx,k

2 ) = −2(l′ − 2s′skpq).

We can now calculate PN (γx,k
1 ), PN (γx,k

2 ) using Lemma 28.
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Proposition 29.

FEN
(g) =































12(S(r,N)− 2S(r, 2N)) if g = (r − 1, r + 1),

6(PN (γx,k
1 )− PN (γx,k

2 )) if g = (1 + kx, 1) or g = (−1− kx, 1),

−6(PN (γx,k
1 )− PN (γx,k

2 )) if g = (1,−1− kx) or g = (1, 1 + kx),

0 if g = (±1, 1).

Proof. If g = (r − 1, r + 1) and EN ∈ Epq, we get [[14], p. 18]

FEN
(g) = ϕEN

(ξ0(g)) = 12(S(r,N)− 2S(r, 2N)).

We proceed to find the value of the integrals in the remaining cases. The differential form k∗(ωEN
) is of

first kind on the Riemann surface XΓ − P+. We also note that g = (±1, 1), (±1± kx, 1) or (1,±1± kx)

with x one of the prime p or q, then we can’t write it as (r − 1, r + 1).

Since all the Fourier coefficients of the Eisenstein series are real valued, so an argument similar to

[[14], p. 19] shows that FEN
(skx + 1, 1) = FEN

(−skx − 1, 1). Consider the path { 1
skx+2 ,− 1

skx+2} =

{ 1
skx+2 ,

1
skx

} + { 1
skx

, −1
skx

} + { −1
skx

, −1
skx+2}. The rational number 1

skx
correspond to a point of P− in the

Riemann surface XΓ. The differential form k∗ωEN
has no zeros and poles on P−. We deduce that

∫ − 1
skx+2

1
skx+2

k∗(ωEN
) =

∫ 1
skx

1
skx+2

k∗(ωEN
)+

∫
−1
skx

1
skx

k∗(ωEN
)+

∫
−1

skx+2

−1
skx

k∗(ωEN
) = 2FN (skx+1, 1)+

∫
−1
skx

1
skx

k∗(ωEN
).

Let γx,k
1 and γx,k

2 be two matrices in Γ such that γx,k
1 ( 1

skx+2 ) = − 1
skx+2 and γx,k

2 ( 1
skx

) = − 1
skx

. We

deduce that 2FN(skx+ 1, 1) =
∫ γx,k

1 ( 1
skx+2 )

1
skx+2

k∗(ωEN
)−

∫ γx,k
2 ( 1

skx
)

1
skx

k∗(ωEN
).

We now prove that the
∫ γx,k

2 ( 1
skx

)

1
skx

k∗(ωEN
) is independent of the choice of the matrices γx,k

2 ∈ Γ that

take 1
skx

to − 1
skx

. If possible, γx,k
2 and γ′x,k

2 be two matrices such that γx,k
2 ( 1

skx
) = γ′x,k

2 ( 1
skx

) = − 1
skx

.

Since γx,k
2 ∈ Γ, the integral ϕEN

(γx,k
2 ) =

∫ γx,k
2 ( 1

skx
)

1
skx

k∗(ωEN
) is independent of the choice of any point

in H ∪ {−1}, hence by replacing 1
skx

with (γx,k
2 )−1(γ′x,k

2 ) 1
skx

, we get the above integral is same as
∫ γ′x,k

2 ( 1
skx

)

1
skx

k∗(ωEN
) and the integral is independent of the choice of exceptional matrices. Similarly,

we can prove that
∫ γx,k( 1

skx+2 )

1
skx+2

k∗(ωEN
) is also independent of the choice of the matrices that take

1
skx+2 to − 1

skx+2 . Since we have already written down two matrices γx,k
1 and γx,k

2 in Γ such that

γx,k
1 ( 1

skx+2) = − 1
skx+2 and γx,k

2 ( 1
skx

) = − 1
skx

, we use these matrices to find those integrals.

The above calculation shows that

2πEN
(γx,k

1 )− πEN
(hγx,k

1 h−1) = 2FN(skx+ 1, 1) + 2πEN
(γx,k

2 )− πEN
(hγx,k

2 h−1).

Hence, we get

FEN
(skx+1, 1) =

2πEN
(γx,k

1 )− πEN
(hγx,k

1 h−1)− 2πE(γ
x,k
2 ) + πE(hγ

x,k
2 h−1)

2
= 6(PN (γx,k)−PN (γx,k

2 )).

Since FEN
((1 + skx, 1)) = −FEN

((1,−1− skx)), the above equation determine the Eisenstein elements

for the Eisenstein series EN completely. �



14 DEBARGHA BANERJEE AND SRILAKSHMI KRISHNAMOORTY

From the above lemma, we conclude that 6FN (g) = FEN
(g).

Lemma 30. For EN ∈ E2(Γ0(pq)), let us consider the element E0
EN

of H1(XΓ − P−, P+,Z) defined by

E0
EN

=
∑

g∈P1(Z/pqZ) FEN
(g)ξ0(g). For all c ∈ H1(XΓ − P+, P−,Z), we have E0

EN
◦ c = ϕEN

(c)

Proof. By Theorem 19, we write the even Eisenstein element uniquely as
∑

g∈P1(Z/pqZ)

HEN
(g)ξ0(g).

By loc. cit. , [g]0 ◦ [h]0 = 1 if and only if Γg = Γh. The function HEN
and FEN

coincide since HEN
(g) =

∑

g∈P1(Z/pqZ) HEN
(g)ξ0(g) ◦ ξ0(g) = E0

EN
◦ ξ0(g) = FEN

(g). �

For the modular curve XΓ, we have a similar short exact sequence

0 → H1(XΓ − P−,Z) → H1(XΓ − P−, P+,Z)
δ0−→ ZP+ → Z → 0.

The boundary map δ0 takes a geodesic, joining the the point r and s of P+ to the formal symbol [r]− [s].

7. Eisenstein elements and winding elements for Γ0(pq)

7.1. Eisenstein elements for Γ0(pq). We first prove an elementary number theoretic lemma. Recall, l

and m are two unique integers such that lq+mp ≡ 1 (mod pq) with 1 ≤ l ≤ (p−1) and 1 ≤ m ≤ (q−1).

Lemma 31. For all k with 1 ≤ k ≤ (q − 1), we can choose an integer s(k) ∈ (Z/qZ) such that

(kp,−1) = (p, s(k)p− 1)

in P1(Z/pqZ). The map k → s(k) is a bijection (Z/qZ)∗ → (Z/qZ)− {m}.

Proof. For all k with 1 ≤ k ≤ (q−1), let k′ be the inverse of k in (Z/qZ)∗ . By Chinese remainder theorem,

we choose an unique x with 1 ≤ x ≤ (pq− 1) such that x ≡ −1 (mod p) and x ≡ −k′ (mod q). Observe

that x is coprime to both p and q. We write x = s(k)p−1 for an unique s(k) with 0 ≤ s(k) ≤ (q−1). Since

Γ0(pq)\SL2(Z) ∼= P1(Z/pqZ), we deduce that (kp,−1) = (xkp,−x) = (−p,−x) = (p, x) = (p, s(k)p− 1)

in P1(Z/pqZ).

Consider the map (Z/qZ)∗ → (Z/qZ) given by k → s(k). If lq +mp ≡ 1 (mod pq) then m is not in

the image of this map. This map is one-one since if s(k) = s(h) then k ≡ h (mod q). Hence, the map

(Z/qZ)∗ → (Z/qZ) − {m} k → s(k) is a bijection. �

For all t coprime to pq, consider the set V of all matrices of the form αt.

Proposition 32. The boundary of any element

X =
∑

g∈P1(Z/pqZ)

F (g)[g]∗

in H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z) is of the form

δ(X) = A(X)[
1

p
] +B(X)[

1

q
] + C(X)[∞]− (A(X) +B(X) + C(X)[0]
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with

A(X) =

q−1
∑

k=0

[F (βk)− F (βkS)], B(X) =

p−1
∑

i=0

[F (γi)− F (γiS)]

and C(X) = [F (0, 1)− F (1, 0)].

Proof. Choose an explicit coset representatives of Γ0(pq)\SL2(Z) (cf. Lemma 8) and write

X = C(X)[I]∗ +
∑

αt∈V

F (1, t)[αt]
∗ +

q−1
∑

k=1

F (1, kp)[αkp]
∗ +

p−1
∑

k=1

F (1, kq)[αkq ]
∗

+

q−1
∑

i=0

F (p, ip− 1)[βi]
∗ +

p−1
∑

j=0

F (q, jq − 1)[βj]
∗.

According to Lemma 31 for 1 ≤ k ≤ (q− 1), we have αkpS = Zβs(k) for some Z ∈ Γ0(pq). We deduce

that

q−1
∑

k=1

F (1, kp)[αkp]
∗ +

q−1
∑

i=0

F (p, ip− 1)[βi]
∗ =

q−1
∑

k=1

(F (1, kp)[αkp]
∗ + F (kp,−1)[αkpS]

∗) + F (βm)[βm]∗

and

p−1
∑

k=1

F (1, kq)[αkq]
∗ +

p−1
∑

j=0

F (q, jq − 1)[γj ]
∗ =

p−1
∑

k=1

(F (1, kq)[αkq ]
∗ + F (kq,−1)[αkqS]

∗) + F (γl)[γl]
∗.

A small check shows that δ([αkp]
∗) = δ([αp]

∗) and δ([αkp]
∗) = −δ([αkpS]

∗).

We now calculate δ([βm]∗) and δ([γl]
∗). Since lq +mp ≡ 1 (mod pq) and −I ∈ Γ0(pq), so we get

(7.1)
(

1−q(l−1) m(l−1)
(l−1)pq 1+lq(l−1)

)

(

m −l
q p

)

= γβmS

and
(

1−p(m+1) −l(m+1)
(1+m)pq 1−mp(l+m)

)

(

m −l
q p

)

=
(−1 −l

q −mp

)

= γl,

for some γ ∈ Γ0(pq) and hence we have Γ0(pq)βmS = γl. From δ([βm]∗) = δ([αq ]
∗ − [αp]

∗) and

δ([γl]
∗) = δ([αp]

∗ − [αq]
∗), it is easy to see that

δ(

q−1
∑

k=1

F (1, kp)[αkp]
∗ +

q−1
∑

i=0

F (p, jp− 1)][βj ]
∗) =

q−1
∑

k=1

[F (1, kp)− F (kp,−1)]δ([αp]
∗) + F (βm)δ([βm]∗).

and

δ(

p−1
∑

k=1

F (1, kq)[αkq]
∗ +

p−1
∑

j=0

F (q, jq − 1)][γj ]
∗) =

p−1
∑

k=1

[F (1, kq)− F (kq,−1)]δ([αq]
∗) + F (q, lq − 1)δ([γl]

∗).

F (p,mp− 1)δ([βm]∗) + F (q, lq − 1)δ([γl]
∗) = [F (βm)− F (βmS)](δ([αq ]

∗)− δ([αp]
∗)).

Recall, δ([αp]
∗) = [0] − [ 1p ] and δ([αq]

∗) = [0] − [ 1q ]. The above calculation shows that δ(X) =

C(X)δ([I]∗)+A(X)δ([αp]
∗)+B(X)δ([αq ]

∗) with, A(X) =
∑q−1

k=0[F (p, kp− 1)−F (kp− 1,−p)], B(X) =
∑p−1

m=0[F (γ′
l)− F (γ′

lS)] and C(X) = F (I)− F (S). We deduce the proposition. �

We also prove similar proposition for Γ ⊂ Γ(2).
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Proposition 33. The boundary of any element

X =
∑

g∈P1(Z/pqZ)

F (g)ξ0(g)

in H1(XΓ − P−, P+,Z) is of the form

δ0(X) = A′(X)[
1

p
] +B′(X)[

1

q
] + C′(X)[∞]− (A′(X) +B′(X) + C′(X)[0]

with

A′(X) =

q−1
∑

k=0

[F (β′
k)− [

q−1
∑

k=1

F (α′
kp)]− F (γ′

l), B
′(X) =

p−1
∑

i=0

[F (γ′
i)− [

p−1
∑

k=1

F (α′
kq)]− F (β′

m)

and C′(X) = [F (0, 1)− F (α′
pq)].

Proof. This is a straightforward calculation using the coset representatives of Γ\Γ(2) [cf. Lemma 16]. �

Proposition 34. For E ∈ Epq, the boundaries of almost Eisenstein elements E ′
E in H1(X0(pq) − R ∪

I, ∂(X0(pq)),Z) corresponding to the Eisenstein series E are −δ(E) [§4].

Proof. For E ∈ Epq, let E ′
E =

∑

g∈P1(Z/pqZ) GE(g)[g]
∗ be the almost Eisenstein element. According to

Proposition 32, we need to calculate A(E ′
E), B(E ′

E) and C(E ′
E).

For all 0 ≤ k < (q − 1), βkT = βk+1 and βq−1T = γβ0 with γ =
(

1+pq q

−qp2 1−qp

)

. We have an inclusion

H1(Y0(pq),Z) → H1(Y0(pq), R∪I,Z). Since {ρ∗, γρ∗} = {β0ρ
∗, γβ0ρ

∗} = −
∑q−1

k=0{βkρ, βkρ
∗}, we deduce

that

πE(γ) =

∫ γz0

z0

E(z)dz = E ′
E ◦ {z0, γz0} = −E ′

E ◦ (
q−1
∑

k=0

{βkρ, βkρ
∗}) = −

q−1
∑

k=0

E ′
E ◦ {βkρ, βkρ

∗}.

Applying Cor. 6, we have
∑q−1

k=0 E ′
E ◦ {βkρ, βkρ

∗} =
∑q−1

k=0[GE(βk) − GE(βkS)] = −A(E ′
E). Hence,

we prove that A(E ′
E) = −πE(γ). By interchanging p and q, we have B(E ′

E) = −πE(γ0) for γ0 =
(

1+pq p

−pq2 1−qp

)

.

We now calculate πE(γ) and πE(γ0) using [19]. Recall, 1
p is a cusp with eΓ0(pq)(

1
p ) = q. Consider the

matrices x =
( 1 −q
−p 1+qp

)

and y =
( 1 −p
−q 1+qp

)

respectively. One can easily check that x
(

1 q
0 1

)

x−1 = γ and

y
(

1 p
0 1

)

y−1 = γ0. Notice that x(i∞) = Γ0(pq)
1
p and y(i∞) = Γ0(pq)

1
q . By [[19], p. 524], we deduce that

πE(γ) = eΓ0(pq)(
1
q )a0(E[ 1p ]) and πEpq

(γ0) = eΓ0(pq)(
1
p )a0(E[ 1p ]).

According to Proposition 32, the boundary of the almost Eisenstein element corresponding to an

Eisenstein series E is

δ(E ′
E) = A(E ′

E)[
1

p
] +B(E ′

E)[
1

q
] + C(E ′

E)[∞]− (A(E ′
E) +B(E ′

E) + C(E ′
E))[0]

with A(E ′
E) = qa0(E[ 1p ]), B(E ′

E) = pa0(E[ 1q ]) and C(E ′
E) = −[F (I)− F (S)]. Applying Cor. 6 again, we

deduce that that F (I)− F (S) =
∫ ρ∗

ρ E(z)dz = −a0(E). For E ∈ E2(Γ0(pq)), the boundary of E is

δ(E) = a0(E)([∞] − [0]) + qa0(E[
1

p
])([

1

p
]− [0]) + pa0(E[

1

q
])([

1

q
]− [0]) = δ(E ′

E).

�
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Let β and h be the matrices ( 1 2
0 1 ) and ( 1 1

0 2 ) respectively. Let

π∗ : H1(XΓ − P−, P+,Z) → H1(X0(pq)−R ∪ I, ∂(X0(pq)),Z)

be the isomorphism defined by π∗(ξ0(g)) = [g]∗ [[12], Cor. 1]. It is easy to see that δ(π∗(X)) = δ0(X) for

all X ∈ H1(XΓ − P−, P+,Z)

Proposition 35. For all E ∈ Epq, let E0
E be the even Eisenstein element in H1(XΓ − P−, P+,Z) [§ 6].

The boundary of the modular symbol π∗(E0
E) is −6δ(E).

Proof. By Theorem 12, we explicitly write down the even Eisenstein element E0
E in the relative homology

group H1(XΓ − P−, P+,Z) as

E0
E =

∑

g∈P1(Z/pqZ)

FE(g)ξ0(g).

According to Proposition 19, we need to calculate A′(E0
E), B

′(E0
E) and C′(E0

E). For 0 ≤ k < (q − 2), we

have β′
kβ = β′

k+2 . A small check shows that β′
q−1β = β′

1 and β′
q−2β = γ′β′

0 with

γ′ =
(

1+2pq(1+q) 2q

−2q(p+pq)2 1−2pq(1+q)

)

∈ Γ.

As a homology class in H1(XΓ − P+, P−,Z), we have

{−1, γ′(−1)} = {β′
0(−1), γ′β′

0(−1)} = −
q−1
∑

k=0

{β′
k(1), β

′
k(−1)} =

q−1
∑

k=0

{β′
k(−1), β′

k(1)}.

By the definition of the even Eisenstein elements, we conclude that

∫ γ′z0

z0

k∗(ωE) = E0
E ◦ {z0, γ′z0} = −E0

E ◦ (
q−1
∑

k=0

(β′
k(1), β

′
k(−1)) = −

q−1
∑

k=0

E0
E ◦ {β′

k(1), β
′
k(−1)}.

It is easy to see that hASBh−1 ∈ SL2(Z) for all A,B ∈ Γ(2). Since [α′
kqS] = [γ′

s(k)] in P1(Z/pqZ), so

κ′ = α′
kqS(γ

′
s(k))

−1 ∈ Γ0(pq) and hκ′h−1 ∈ Γ0(pq). We deduce that the differential form

k∗(ωE) = f(z)dz = [2E(z)− 1

2
E(

z + 1

2
)]dz

is invariant under κ′. According to the above argument,

(7.2) FE(α
′
kq) =

∫ α′

kq(−1)

α′

kq
(1)

f(z)dz =

∫ α′

kqS(1)

α′

kq
S(−1)

f(z)dz = −
∫ α′

kqS(−1)

α′

kq
S(1)

f(z)dz

= −
∫ κ′−1α′

kqS(−1)

κ′−1α′

kq
S(1)

f(κ′z)dκ′z = −
∫ γ′

s(k)(−1)

γ′

s(k)
(1)

f(z)dz = −FE(γ
′
s(k)).

A similar calculation shows that FE(γ
′
l) = −FE(β

′
m) and FE(αkp) = −FE(βs(k)) for some s(k) ∈ (Z/qZ)∗.

Applying Theorem 18, we have

q−1
∑

k=0

FE(β
′
k) =

q−1
∑

k=0

E0
E ◦ {β′

k(1), β
′
k(−1)} = −

∫ γ′z0

z0

k∗(ωE).

According to the definition of the period πE of the Eisenstein series E(z) [cf. Section 3], we get
∫ γ′z0

z0

k∗(ωE) =

∫ γ′z0

z0

[2E(z)− 1

2
E(

z + 1

2
)]dz = 2πE(γ

′)− πE(hγ
′h−1).
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We calculate πE(γ
′) and πE(hγ

′h−1). From 27, it is easy to see that hγ′h−1 =
(

1+z qv2

−4p2q(1+q)2 1−z

)

with

v = (1− p(1 + q)) and z = 2pqv(1 + q). Furthermore, the matrix hγ′h−1 decomposes as

hγ′h−1 =
(

1−p(1+q) p(1+q)
2

−2p(1+q) 1+p(1+q)

)

(

1 q
0 1

)

(

1−p(1+q) p(1+q)
2

−2p(1+q) 1+p(1+q)

)−1

.

Since the matrix
(

1−p(1+q)
p(1+q)

2

−2p(1+q) 1+p(1+q)

)−1

takes the cusp i∞ to 1
p , we have πE(hγ

′h−1) = qa0(E[ 1p ]). We

further decompose γ′ as
(

1 −2q
−p(1+q) 1+2pq(1+q)

)

(

1 2q
0 1

)

(

1 −2q
−p(1+q) 1+2pq(1+q)

)−1

.

The matrix
(

1 −2q
p(1+q) 1+2pq(1+q)

)

takes the cusp i∞ to 1
p . We deduce that πE(γ

′) = 2qa0(E[ 1p ]) and
∫ γ′z0
z0

k∗(ωE) = 3a0(E[ 1p ]). A simple calculation shows that

A′(E0
E) =

q−1
∑

k=0

FE(β
′
k)−

q−1
∑

k=0

FE(α
′
kp)− FE(γ

′
m) = 2

q−1
∑

k=0

FE(β
′
k) = −6a0(E[

1

p
]).

By interchanging p and q, we obtain B′(E0
E) = −6a0(E[ 1q ]). Since α′

pqS ∈ Γ0(pq), a calculation similar

to Equation 7.2 shows that

FE(I) = −FE(αpq) =

∫ −1

1

[2E(z)− 1

2
E(

z + 1

2
)]dz = −

∫ β(−1)

−1

[2E(z)− 1

2
E(

z + 1

2
)]dz = −3a0(E),

we conclude that C′(E0
E) = [FE(I)− FE(αpq)] = −6a0(E) and hence δ0(E0

E) = δ(E0
E) = −6δ(E). �

The inclusion map i : (X0(pq) − R ∪ I, ∂(X0(pq)) → (X0(pq), ∂(X0(pq)) induces an onto map i∗ :

H1(X0(pq) − R ∪ I, ∂(X0(pq),Z) → H1(X0(pq), ∂(X0(pq)),Z) with i∗([g]∗) = ξ(g). Note that δ([g]∗) =

[g.0] − [g.∞] = δ′(ξ(g)) = δ′(i∗([g]∗)). From [§ 3.4], we have δ(c) = δ′(i∗(c)) for all homology class

c ∈ H1(X0(pq)−R ∪ I, ∂(X0(pq),Z).

Lemma 36. The integrals of every holomorphic differential on X0(pq) over i∗(E ′
E) and i∗π∗(E0

E) are

zero.

Proof. A straightforward generalization of [[14], Lemma 5]. �

We now prove the main Theorem 1 of this article.

Proof. By [[12], Cor. 3], we obtain i∗(E ′
E) ◦ c = E ′

E ◦ i∗c =
∫

c i∗(E(z)dz). Hence, i∗(E ′
E) is the Eisenstein

element inside the space of modular symbols corresponding to E. By Proposition 34 and 35, the boundary

of π∗(E0
E) is same as the boundary of 6i∗(E ′

E).

There is a non-degenerate bilinear pairing S2(Γ0(pq))×H1(X0(pq),R) → C given by (f, c) =
∫

c
f(z)dz.

Hence, the integrals of the holomorphic differentials over H1(X0(pq),Z) are not always zero. By Lemma 36,

the integrals of every holomorphic differentials over i∗(E ′
E) and i∗(π∗(E0

E)) are always zero. We deduce

that

EE = i∗(E ′
E) =

1

6
i∗π∗(E0

E) =
1

6

∑

g∈P(Z/pqZ)

FE(g)ξ(g).

for E ∈ Epq. Since FN (g) = 1
6FEN

(g), we obtain the theorem. �
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7.2. The winding elements of level pq. Recall the concept of the winding element.

Definition 37. [Winding elements] Let {0,∞} denote the projection of the path from 0 to ∞ in

H∪ P1(Q) to X0(pq)(C). We have an isomorphism H1(X0(pq),Z)⊗R = HomC(H
0(X0(pq),Ω

1),C). Let

epq ∈ H1(X0(pq),R) corresponds to the homomorphism ω → −
∫∞
0

ω. The modular symbol epq is called

the winding element.

The winding elements are the elements of the space of modular symbols whose annihilators define

ideals of the Hecke algebras with the L-functions of the corresponding quotients of the Jacobian non-zero.

In this paper, we found an explicit expression of the winding element. Let epq ∈ H1(X0(pq),Z) ⊗ R be

the winding element. The following proposition help us to write down the winding element explicitly.

Since
∑

x∈∂(X0(pq))

eΓ0(pq))(x)a0(E[x]) = 0, we write

δ(E) = a0(E)({∞} − {0}) + qa0(E[
1

p
])({1

p
} − {0}) + pa0(E[

1

q
])({1

q
} − {0}).

Lemma 38. The constant Fourier coefficients of Epq at cusps 0, 1
p ,

1
q and ∞ are 1−pq

24pq , 0, 0 and pq−1
24

respectively.

Proof. We first prove that the constant coefficient for the Fourier expansion of Epq at the cusp 1
p is 0.

As usual, the constant term of the Fourier expansion of Epq at the cusp 1
p is the constant term at ∞

of Epq[β0]. Similarly, the constant term of the Fourier expansion of Epq at the cusp 1
q is the constant

term at ∞ of Epq [γ0]. Let ∆ be the Ramanujan’s cusp form of weight 12. We write d
dz log∆(β(z)) =

12 d
dz log(pz + 1) + d

dz log∆(z) for β =

(

1 0

p 1

)

. A simple calculation shows that

∆(
pqz

pz + 1
) = ∆(

(

q 0

1 1

)

pz) = ∆(

(

q −1

1 0

)(

1 1

0 q

)

pz) =

∆(

(

q −1

1 0

)

(
pz + 1

q
)) = (

pz + 1

q
)12∆(

pz + 1

q
).

By taking logarithmic derivative, we deduce that

d

dz
log∆

(

q −1

1 0

)

(
pz + 1

q
) = 12

d

dz
log(pz + 1) +

d

dz
log∆(

pz + 1

q
).

Since Epq(z) =
1

2πi
d
dz log

∆(pqz)
∆(z) , the above calculation shows that the constant term of Epq at the cusp

1
p is 0. Similarly, the constant term of Epq at the cusp 1

q is 0. The constant term of Epq is pq−1
24 at the

cusp ∞ and 1−pq
24pq at 0. �

Using Lemma 36 and Lemma 38, we write

Corollary 39.

(1− pq)epq =
∑

x∈(Z/pqZ)∗

Fpq((1, x)){0,
1

x
}.
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Remark 40. For the Eisenstein series Ep ∈ E2(Γ0(p)),
1
p represents the cusp ∞ and 1

q represents the

cusp 0. We deduce that a0(Ep[β0]) =
p−1
24 and a0(Ep[γ0]) =

1−p
24p . For the other Eisenstein series Eq ∈

E2(Γ0(q)),
1
q represents the cusp ∞ and 1

p represents the cusp 0. We deduce that a0(Eq[γ0]) =
q−1
24 and

a0(Eq[β0]) =
1−q
24q .
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